Midterm Exam - Functional Analysis M. Math I

08 March, 2022
(i) Duration of the exam is 3 hours.
(ii) The maximum number of points you can score in the exam is 100 .
(iii) You may directly invoke results proved in the class.
(iv) You are not allowed to consult any notes or external sources for the exam.

Name: \qquad
Roll Number:

1. (10 points) Let X be a measure space. Suppose $f \in L^{1}(X ; \mu)$. Prove that for every $\varepsilon>0$ there exists a $\delta>0$ such that $\int_{E}|f| d \mu<\varepsilon$ whenever $\mu(E)<\delta$.

Total for Question 1: 10
2. Let m denote the Lebesgue measure on \mathbb{R}, and $\mathbb{R}_{>0}$ denote the set of positive real numbers.
(a) (10 points) Prove that, if $1 \leq p<q \leq \infty$, then neither of the spaces $L^{p}(\mathbb{R} ; m), L^{q}(\mathbb{R} ; m)$ is contained in the other.
(b) (10 points) Let $0<\alpha \leq \beta<\infty$. Find all values of p in $[1, \infty]$ in terms of α, β (with justification) such that

$$
\frac{1}{x^{\alpha}+x^{\beta}},
$$

belongs to $L^{p}\left(\mathbb{R}_{>0} ; m\right)$?
3. Let $n \in \mathbb{N}$. For a nonempty closed convex set $K \subseteq \mathbb{R}^{n}$, the support function $h(K, \cdot)=$ $h_{K}: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ is defined by

$$
h(K, \vec{u}):=\sup \{\langle\vec{x}, \vec{u}\rangle \mid x \in K\} \text { for } \vec{u} \in \mathbb{R}^{n} .
$$

(a) (10 points) Show that the range of h_{K} is in \mathbb{R} if and only if K is compact.
(b) (15 points) If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a sublinear function, then there is a unique non-empty compact convex set K in \mathbb{R}^{n} such that $f=h_{K}$.

Total for Question 3: 25
4. Let $C(\mathbb{R})$ denote the space of real-valued continuous functions on \mathbb{R}. For a continuous function $\varepsilon: \mathbb{R} \rightarrow \mathbb{R}_{>0}$ and $f \in C(\mathbb{R})$, define

$$
B(f ; \varepsilon):=\{g \in C(\mathbb{R}):|g(x)-f(x)| \leq \varepsilon(x) \forall x \in \mathbb{R}\}
$$

(a) (10 points) Show that $\left\{B(f ; \varepsilon): f \in C(\mathbb{R}), \varepsilon \in C\left(\mathbb{R} ; \mathbb{R}_{>0}\right)\right\}$ is a base for a locally convex topology \mathcal{T} on $C(\mathbb{R})$.
(b) (10 points) Show that $(C(\mathbb{R}), \mathcal{T})$ is not metrizable.

Total for Question 4: 20
5. (10 points) For finite-dimensional vector space V over $\mathbb{K}(=\mathbb{R}$ or $\mathbb{C})$, show that there is a unique locally convex topology on V.

Total for Question 5: 10
6. (15 points) Prove that every non-empty proper closed convex set in a locally convex space V over $\mathbb{K}(=\mathbb{R}$ or $\mathbb{C})$ is the intersection of some family of half-spaces of the form $\{\vec{x} \in V: \operatorname{Re} \rho(\vec{x}) \leq c\}$, where ρ is a continuous linear functional on V and $c \in \mathbb{R}$.

Total for Question 6: 15

