Midterm Exam - Functional Analysis M. Math I

08 March, 2022

- (i) Duration of the exam is 3 hours.
- (ii) The maximum number of points you can score in the exam is 100.
- (iii) You may directly invoke results proved in the class.
- (iv) You are not allowed to consult any notes or external sources for the exam.

Name: _____

Roll Number:

1. (10 points) Let X be a measure space. Suppose $f \in L^1(X; \mu)$. Prove that for every $\varepsilon > 0$ there exists a $\delta > 0$ such that $\int_E |f| d\mu < \varepsilon$ whenever $\mu(E) < \delta$.

Total for Question 1: 10

- 2. Let *m* denote the Lebesgue measure on \mathbb{R} , and $\mathbb{R}_{>0}$ denote the set of positive real numbers.
 - (a) (10 points) Prove that, if $1 \le p < q \le \infty$, then neither of the spaces $L^p(\mathbb{R}; m)$, $L^q(\mathbb{R}; m)$ is contained in the other.
 - (b) (10 points) Let $0 < \alpha \leq \beta < \infty$. Find all values of p in $[1, \infty]$ in terms of α, β (with justification) such that

$$\frac{1}{x^{\alpha} + x^{\beta}},$$

belongs to $L^p(\mathbb{R}_{>0};m)$?

3. Let $n \in \mathbb{N}$. For a nonempty closed convex set $K \subseteq \mathbb{R}^n$, the support function $h(K, \cdot) = h_K : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is defined by

$$h(K, \vec{u}) := \sup\{\langle \vec{x}, \vec{u} \rangle \mid x \in K\} \text{ for } \vec{u} \in \mathbb{R}^n.$$

- (a) (10 points) Show that the range of h_K is in \mathbb{R} if and only if K is compact.
- (b) (15 points) If $f : \mathbb{R}^n \to \mathbb{R}$ is a sublinear function, then there is a unique non-empty compact convex set K in \mathbb{R}^n such that $f = h_K$.

Total for Question 3: 25

4. Let $C(\mathbb{R})$ denote the space of real-valued continuous functions on \mathbb{R} . For a continuous function $\varepsilon : \mathbb{R} \to \mathbb{R}_{>0}$ and $f \in C(\mathbb{R})$, define

 $B(f;\varepsilon) := \{ g \in C(\mathbb{R}) : |g(x) - f(x)| \le \varepsilon(x) \; \forall x \in \mathbb{R} \}.$

- (a) (10 points) Show that $\{B(f;\varepsilon) : f \in C(\mathbb{R}), \varepsilon \in C(\mathbb{R};\mathbb{R}_{>0})\}$ is a base for a locally convex topology \mathcal{T} on $C(\mathbb{R})$.
- (b) (10 points) Show that $(C(\mathbb{R}), \mathcal{T})$ is not metrizable.

Total for Question 4: 20

5. (10 points) For finite-dimensional vector space V over $\mathbb{K} (= \mathbb{R} \text{ or } \mathbb{C})$, show that there is a unique locally convex topology on V.

Total for Question 5: 10

6. (15 points) Prove that every non-empty proper closed convex set in a locally convex space V over \mathbb{K} (= \mathbb{R} or \mathbb{C}) is the intersection of some family of half-spaces of the form $\{\vec{x} \in V : \text{Re } \rho(\vec{x}) \leq c\}$, where ρ is a continuous linear functional on V and $c \in \mathbb{R}$.

Total for Question 6: 15